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Abstract—The need for robust target/background segmentation has led to the use of multiple band sensing systems.
These sensors usually include some combination of visual, radar or laser range, and thermal infrared modalities.
Despite over a decade of research, there are still a number of problem areas with existing automatic target
recognition systems. Foremost among these are the high false-alarm rates frequently encountered due to
nonrepeatability of the target signatures and possible obscuration of the targets from camouflage, environmental and
sensor variations ( Roth, 1989, IEEE Transactions on Systems, Man and Cybernetics, 19, 1210-1217; Roth, 1990,
IEEE Transactions on Neural Networks, 1, 28—43). This paper presents a biologically motivated neural network
system based on the rattlesnake that integrates multichannel sensory inputs for ATD/R. The system demonstrates a
probability of detection greater than 90% with false-alarm rate less than 10~3 false-alarms/km?® for very small fixed
largets using two-channel infrared input. In addition, temporal properties of the thermal neurons in the rattlesnake
are demonstrated to be of possible use for segmentation of mobile targets from background clutter. Also presented
are the results of some experimental studies on real-world multichanne! infrared images sampled throughout a day.

Keywords—ATR, Neural network, Rattlesnake, Sensor fusion, Fuzzy sets.

1. INTRODUCTION

Traditional statistical approaches to the ATR
problem are often hampered by changes in environ-
mental conditions. A high probability of detection
(Pp) is sometimes accompanied by high false-alarm
rates (FAR). Neural networks offer an alternative
choice for ATR applications, due to their inherently
adaptive and parallel properties (Roth, 1989, 1990).
Some recent work along these lines with radar,
infrared and sonar signals have demonstrated a Pp
that is usually greater than 90% and a FAR that is
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negligible (Gorman & Sejnowski, 1988; Farhat & Bai,
1989; Landowski & Fong, 1990; Bai & Farhat, 1992;
Hemminger & Pao, 1994).

Biological systems are optimized for ATR-like
applications in the predator—prey relationship and
lend themselves well to hardware implementations
(Hartline et al., 1978; Schiff et al., 1994). In addition,
biological systems offer real-time solutions to target
localization and tracking problems (Grossberg et al.,
1993). There are numerous biological neural network
systems that integrate sensory information for an
enhanced view of the environment. Among these are
the barn owl (Spence et al., 1989; Spence & Pearson,
1990), the vestibulo-ocular reflex system (Paulin et
al., 1989), the rattlesnake (Newman & Hartline, 1981)
and the echolocating bats (Simmons, 1990). The optic
tectum in the rattlesnake directly integrates bimodal
inputs (visual and thermal infrared) in a set of six
specialized neurons (Newman & Hartline, 1981). Our
previous studies have indicated that these neuronal
types can be used as generalized fusion filters for any
pair of disparate sensory inputs (Huntsberger, 1990,
1992a, b). This includes both target signature
determination and target discrimination tasks.

Feature selection for robust ATR is directly tied
to target discrimination from the sensor input and
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any subsequent processing. Uncertainties and ambi-
guities in single sensor responses can be resolved
using multiple sensors (Perlovsky, 1987; Ajjimarang-
see & Huntsberger, 1988; Nandhakumar & Aggar-
wal, 1988; Huntsberger, 1990; Chu & Aggarwal,
1992). Fuzzy set theory approaches, when com-
bined with sensor fusion, further reduce the effects
of such sensor limitations as saturation (Chatterjee
& Huntsberger, 1988; Perlovsky & McManus,
1991; Huntsberger, 1992a, b; Krishnapuram & Lee,
1992). The primary advance made with the fuzzy
set theory approaches lies in the rich level of
representation built into the framework (Huntsber-
ger et al., 1986). Variations in sensor response over
a surface and edge strength degradation due to
motion are directly included in the membership
values to the image subsets. In addition, extensions
for texture and motion analysis are straightforward
(Huntsberger & Jayaramamurthy, 1987a, 1988,
Huntsberger et al., 1987).

A generalized sensor input processing model is the
key to the minimization of environmental change
impact on ATR algorithm performance. Relative
insensitivity to diurnal variations is built into our
algorithm through the exploitation of cross-modality
sensor interactions. These types of cross-modality
fusion characteristics are found in specialized neurons
in the optic tectum of the rattlesnake (Newman &
Hartline, 1981). The cross-modality neuronal re-
sponses are simple enough to be simulated using
lookup tables for efficiency (Ajjimarangsee &
Huntsberger, 1988).

Our previous experimental studies compared the
Dempster—Shafer (Shafer, 1976) and modified Demp-
ster—Shafer (Ishizuka, 1981; Huntsberger & Jayar-
amamurthy, 1987b) statistical evidence combination
methods to a neural network model based on the
rattlesnake optic tectum for integration of sensor
inputs (Chatterjee & Huntsberger, 1988; Huntsber-
ger, 1992a). The results indicated that the biologically
motivated neural network system performed as well
as, or better than, the statistical methods. The neural
network system was an order of magnitude faster
since there was none of the overhead associated with
the global normalization step of the Dempster—Shafer
algorithm. These properties make the neural network
system an ideal candidate for real-time ATR
applications.

This paper presents an ATR system, shown in
Figure 1, that is based on a three stage neural
network model which contains fuzzy self-organizing
feature maps combined with filters derived from the
cross-modality fusion neurons in the optic tectum of
the rattlesnake. These cross-modality fusion neurons
give the system the ability to detect small fixed targets
with a high probability, despite very large diurnal
variations in the multi-channel infrared sensor inputs.

T. Huntsberger

/ Cluster Analysis Level /

7/ 7 L ] J [T/, 7
AND OR S1E S1l S2E  S21
[) 4 ’

_ 3 [ }
:[ T |
Sensar 1, /'L_J /"_7 Sensor 2j

i Cluster Analysis Level /

7 [ am—
Sensor 1 Sensor 2
Image image

FIGURE 1. Multi-level neural network model for sensor
integration.

Rattlesnakes exploit this capability for hunting in the
late afternoon, when the thermal infrared pits are
almost saturated from the landscape that has been
heating all day.

The next section discusses some previous experi-
mental biological background work and the overall
neural network system design. Some properties of the
fuzzy self-organizing feature map algorithm for
unsupervised target signature determination are also
included. This is followed by a discussion of
extensions to the system for mobile target discrimina-
tion. Finally, the results of some experimental studies
on both fixed and mobile targets using real-world
multichannel infrared data are presented.

2. NEURAL NETWORK MODEL

Snakes in the subfamily Crotalinae all posses pit
organs that are sensitive to heat through a dense
network of nerve fibers. These pit vipers also have
specialized routing and processing centers, which
control information transfer to the optic tectum
portion of the midbrain. Although the optic nerve
fibers feed almost directly into the optic tectum, only
the trigeminal nerve from the pit organ passes
through these centers, which are called the LTTD
and the reticularis caloris (RC). This process results
in a type of spatial registration of the visual and
thermal infrared inputs within the optic tectum.

An extensive study of single thermal neuron
properties in pit vipers was done by Bullock and
Diecke (1956). They observed that a low intensity
input caused a tonic firing, while firing became phasic
as soon as a threshold was exceeded. The spatial
response characteristics of thermal neurons was
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studied by Goris and Terashima (1973). Two types of
thermal neurons were found (cold and hot), which
responded primarily as contrast detectors. This
behavior is particularly important for discriminating
prey that is either hotter or colder than the
background, even while the snake is moving.

Development of the optic tectum is directly related
to the diurnal habits of the snake. Tectal lobes are
highly developed for diurnal activity, and not so well
developed for nocturnal activity. Mapping of the
optic tectum and the existence of AND/OR bimodal
neurons was demonstrated by Hartline et al. (1978).
The AND neurons responded to rapidly moving
stimuli in the visual and infrared, while the OR
neurons responded to static or moving stimuli in
either or both channels. A center-surround organiza-
tion was also seen, which was theorized to be hot and
cold thermal neurons feeding into the optic tectum
(Hartline et al., 1978). Thermal neuron properties
were measured by Terashima and Liang (1991), who
also mapped dendritic structure using HRP labeling.
Their investigations found that all paths from the
thermal pit receptor terminated in the LTTD.

The existence of six types of bimodal neurons was
revealed through the experimental studies of New-
man and Hartline (1981). These six types included the
AND/OR neurons seen in the previous study
(Hartline et al., 1978), along with neurons that
exhibited cross-modality interactions. These cross-
modality neurons were of the enhanced and
inhibitory types. The infrared-enhanced visual neu-
rons responsed weakly to a visual stimulus presented
alone, but responded quite strongly to both visual
and infrared stimuli presented together, with the
corresponding behavior for the visual-enhanced
infrared neurons. The infrared-inhibited visual
neurons responded very strongly to a visual stimulus
presented alone, but lost all response if either an
infrared stimulus was presented alone or both stimuli
were presented. The cross-modality neurons of most
use for saturated sensors are the inhibited type, since
target signatures which may be present if only weakly
in one sensor modality may be overwhelmed by the
saturated sensor.

Fuzzy self-organizing feature maps (Huntsberger
& Ajjimarangsee, 1990), hereafter referred to as
FSOFM, are used for the initial and final stages of
the system shown in Figure 1. This type of network,
shown in Figure 2, consists of three layers. The input
layer feeds forward into a distance layer which
determines the distance between the input vector
and the current weights using a predefined metric.
The distance layer then feeds forward into a
membership layer which calculates the membership
value of the input vector to the set of all output
vectors. This is done using the following form derived
from the fuzzy c-means algorithm (Bezdek, 1981) and
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FIGURE 2. Seli-organizing feature map with feedback.

used in a previously developed computer vision
system (Huntsberger et al., 1985):

1
i PR
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where dj; is the distance between the input vector §;
and weight vector W;, ¢ is the number of distance
neurons, and m is a weighting exponent which is set
within the range 2.0 to oo. These membership values
uj; are then fed back into the network and participate
in the weight update rule as:

)

Wj = W, + uj,- * dwj (2)

where dw; = (§ — W,). Details and performance of
sequential and parallel versions of the algorithm can
be found in the original paper (Huntsberger &
Ajjimarangsee, 1990). Experimental studies indi-
cated that the network reproduced the segmentation
results from an earlier standard implementation of
the fuzzy c-means algorithm (Huntsberger et al,
1985; 1986) with close to two orders of magnitude
increase in performance. The network was used in a
previous study for unsupervised identification of
target signatures in multiband imagery (Huntsber-
ger, 1992¢c).

The optic tectum portion of the system is found in
the intermediate stage, where the six types of filters
found experimentally by Newman and Hartline
(1981) were used to train multiple FSOFM. Since
Newman and Hartline only measured response in the
absence or presence of a stimulus, the clamped
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FIGURE 3. Six rattiesnake tusion neuron responses (see text for
description).

network was used to generalize to the full range of
possible inputs. More will be said about this choice in
the experimental section.

After the learning phase of the model has been
completed, a lookup table is used for speed of
processing. These lookup tables are shown in Figure
3, where for each type of filter, low inputs in both
channels correspond to the upper left hand corner of
the filter, and high inputs in both channels
correspond to the lower right hand corner of the
filter. Output from this stage is passed to another
FSOFM in the third stage as fractal signature texture
vectors (Huntsberger et al., 1987) which are derived
from spatial neighborhood sampling of the images.
The size of the neighborhood is dependent on the
desired resolution for target discrimination (taken to
be 9 x 9 in our experimental studies). This use of
fractal signature texture vectors was previously
shown to give good segmentation results for multi-
channel images (Vafaimagden, 1989).

3. THERMAL NEURON MODELING

Mobile targets present the problem of time-varying
stimulus. The spatiotopic mapping of both the
thermal and visual portions of the optic tectum are
relatively well matched in the “strike” zone in front
of the rattlesnake (Hartline et al., 1978). Most of the
non-linear portions of the maps are in the posterior
region and in the peripheral portions of the thermal
sensor. This indicates that processing in the LTTD
prior to the optic tectum may provide some clues to
the temporal properties of the rattlesnake response.
The temporal properties of thermal neurons in the
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LTTD were recently measured by Terashima and
Liang (1991). These parameters can be combined
with the earlier work of Goris and Terashima (1973)
to give the operating characteristics of thermal
neurons under different levels of stimulus.

In our model, spatiotopic neuronal behavior is
approximated using a 2-D grid of point soma model
neurons. Dendritic structure is captured in extra-
cellular linkage of the outputs. The governing
equations for the point soma model (MacGregor,
1987) are:

dE _-E+ [P+ Gk * (Ex — E)|

@ ToaT ®
%TT=~(T—T::+HE’ @
s={1 Gt ®
dg—tK:_GK:_KB*S: (6)

where E is the transmembrane potential, P is the
applied potential, Gg is the neuronal potassium
conductance, Ex = 8.35mV is the potassium equili-
brium potential, 7y a1 = 0.8 ms is the latency time, T
is the adaptive firing threshold, ¢ =0.75 is the
threshold rise, 7, = —55.13mV is the resting thresh-
old of the cell, 7t = 1.76 ms is the time constant rise
of the threshold, S is the spike generation parameter,
B =20mmho/cm? is the post-firing potassim con-
ductance rise, and 7 = 3.81ms is the potassium
decay time constant. The values for these parameters
used in our simulation are taken from the work of
Terashima and Liang (1991) and from MacGregor
(1987).

The measured latency time for thermal neurons
varied from 50 ms to no response in the studies of
Goris and Terashima (1973), depending on the
strength of the input stimulus. This means that a
stimulus with a strong contrast to the background
will cause rapid firing of neurons, with a highly non-
linear decrease in firing frequency as the contrast
decreases. This effect can be included in the model
using an exponential weighting of 7 a1 of the form

TLAT —_ TLATe((l‘O_P)/Z‘O)y (7)
for normalized input stimuli between 0.5 and 1.0, and
TliAT — 7_,LATe((l.o—[’)/l.05)7 (8)

for normalized stimuli less than 0.5, with the latency
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FIGURE 4. Accommodstion of thermal neuron array to a static stimulus.

time measured with direct electrical stimulation is
given by 7yAT.

Rapid accommodation to a static input scene
occurs in the rattlesnake, and the AND fusion
neurons usually only respond to rapidly moving
stimuli (Hartline et al., 1978). This response is of use
to the rattlesnake to filter out background clutter,
since prey will usually be moving. Figure 4 shows a
temporal study of the thermal neuron array that is
excited by a static stimulus. The time step between
frames is 50 ms. The gray scale in this series
represents the transmembrane potential, with dark
for negative values and light for positive values. We
have used pacemaker neurons in order to see the
areas of uniform response more clearly. By the fourth
frame the thermal neuron array has accommodated
to the pattern, and feature discrimination is no longer
possible. Without any motion in the field of view,
object discrimination is not possible with an array of
thermal neurons.

The rattlesnake offsets this effect by slightly
moving its head when it is trying to distinguish prey
from background. This causes a slight motion of the
field of view across the thermal neuron field. Motion
tracking occurs through the highly non-linear latency
of the thermal neuron response. Prey with sufficient
contrast will cause rapid firing of neurons that lie
within the boundaries and leading edge that are
projected onto the thermal neuron array. This
behavior is accompanied by a trail of low firing rate
neurons in the areas of the array that are disoccluded
due to apparent motion of the prey. This effect also

carries over to objects that are undergoing actual
motion across the thermal neuron array. Analogous
behavior was seen in motion analysis systems that
replicated primate visual responses (Hutchinson et
al., 1988; Grossberg & Rudd, 1989; Seibert &
Waxman, 1989; Marshall, 1990). This effect can be
seen in Figure 5, where a rectangular object is moving
from left to right across a field of neurons whose
states have been randomly initialized. The random
initialization is based on aperiodic firing of thermal
neurons in the absence of a specific stimulus, as
reported by Bullock and Diecke (1956), and Goris
and Terashima (1973). The object causes the neurons
within its projected boundaries to fire, with a diffuse
trail of neuronal activity behind it. The next section
reports some experimental studies on real-world data
of the static and motion systems seen in this and the
previous section.

4. EXPERIMENTAL STUDIES

We performed two series of experiments using
multichannel infrared data from a test range at Fort
Drum, New York. The three infrared channels are
polarization, reflectance and thermal. The images
were obtained from a helicopter flyover of the site.
The multichannel inputs were obtained at four times
during the day (0000, 0600, 1200, and 1800 hours).
All of the targets are fixed, and the area of each is
about 0.003% of the field of view. The images are
spatially registered for each time of day, but not
across the times. We decided to use the polarization

FIGURE 5. Response d thermal neuron array to dynamic stimuli.
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FIGURE 6. Three channel infrared scene (0000 hours).

and thermal channels as the bimodal inputs, since the
reflectance channel contained very little information
due to its limited dynamic range.

The first study was designed to test the sensitivity of
the fusion system to diurnal variations in the input. All
runs for the first study were done using the parallel
version of the FSOFM algorithm (Huntsberger &
Ajjimarangsee, 1990) on 32 nodes of the Intel Paragon
at the University of South Carolina. The time for a
two channel analysis took 3.6 s. Based on previous
scaling studies performed on the 1024 node nCUBE at
the University of South Carolina (Hunbsberger &
Ajjimarangsee, 1990), this time would be reduced to
226 ms on a 512 node Paragon. This puts the
algorithm within real-time performance range on a
general purpose supercomputer.

A small subsample of the reflectance, polarization,
and thermal channel images are shown in Figures 6-9
for each time of day. The targets are visible in the
thermal channels at 0600, 1200 and 0000 hours due to
their differential heating rate compared to the
background, but heating during the day has almost

saturated the thermal channel at 1800 hours. There is
virtually no possibility of recovering target locations
during this time period without using another one of
the channels. This situation is similar to the one that
a rattlesnake would find itself in during the same time
of day. The pit organ would be close to saturated,
and visible sensing would be used with the cross-
modality neurons to disambiguate the scene.

The classification results are shown in Figures 10—
13 for the four times of day. In these figures, the
targets that are found are enclosed by boxes, and the
arrows point to false-alarms if boxed or misses if not.
We have used the thermal channel images for the
labeled output, except in the 1800 hour sample where
we have used the polarization channel for clarity. We
compared the Pp and FAR from each of the two
channels (polarization and thermal) to the fused
channel analysis. Single channel results are derived
using just the first and third stages of the system,
without the fusion filters. The Pp calculated using
ground truth information for the study are shown in
Table 1, and the FAR are shown in Table 2. All Pp

FIGURE 7. Three channel infrared scene (0600 hours).
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FIGURE 8. Three channel infrared scens (1200 hours).

FIGURE 9. Three channel Infrared scene (1800 hours).

B

FIGURE 10. Target detection resuits from fused polarization and thermal infrared channels (0000 hours).
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FIGURE 11. Target detection nwﬁs from fused polarization and thermal infrared channels (06800 hours).

are given in percent and all FAR are given in 10°x
false-alarms/km?.

The performance is quite remarkable, considering
that the fusion filters were developed using data from
visible and thermal infrared inputs. Our other studies
on visible and range data (Huntsberger, 1990, 1992a)
indicate that these filters serve as a general-purpose
set for any cross-modality fusion process. If the
sensor response characteristics are known for certain
target types, a set of cross-modality fusion filters with
non-linear behavior can be custom designed and

substituted for the middle stage of the fusion system.
For example, in the case of targets which respond
weakly to one sensor and strongly to another, the
FSOFM generalization for the INFRINH and
VISINH filters shown in Figure 3 can be stretched
toward the origin to favor this combination. In
addition, adaptive filters can be designed that
respond.to changes in environmental conditions.
The' relatively high Pp seen in Table 1 for the
thermal channel taken alone is accompanied by FAR
that are close to two orders of magnitude worse than

FIGURE 12. Target detection resiilts from fused polarization and thermal infrared channels (1200 hours).
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FIGURE 13. Target detection results from fused poiarization and thermal Infrared channels (1800 hours).

the fused channel results. Particularly of note is the
drop to no false-alarms in the 1200 hour and 1800
hour sampled images. The FAR are as good or better
than the results of Yu et al. (1993), which is one of the
best statistical methods for ATR in terms of Pp and
FAR. Their studies were done on thematic mapper
(TM) multiband images taken at a much higher
altitude than our study region. Target spatial and
spectral properties for one time of day were used to
build adaptive templates for identification. The
performance of our system was achieved without
the need to fine-tune the spectral and spatial profiles
of the targets for each time of day, since the
combination of fusion filters and processing in the
initial stage acted as a type of normalization.

The second experimental study investigated the
use of the thermal neuron array for mobile target
discrimination. We used the 1800 hour thermal
channel image to simulate a mobile target as would
be sensed by a moving platform, such as a missile or
helicopter. Four frames from the sequence are shown
in Figure 14, where the mobile target is translating
diagonally from left to right and the platform is
translating in the same direction. This would be

analogous to the case of a moving platform matching
a mobile target’s direction and then tracking. The
rates of translation are 37.5 pixels/frame for the
target and 66.6 pixels/frame for the platform.

The response of the array to the four thermal
images is shown in Figure 15, where the same
neuronal parameters are used as in the discussion
from the previous section. At first, the thermal
neuron array is saturated, but by the second frame
it has started to accommodate to the moving
background clutter. Although there is a lot of
ground clutter that is moving at a different rate
relative to the target, target discrimination is fairly
good. This property of the thermal neuron array
occurs for any low contrast background, whether
stationary or moving.

There are some limitations to the effectiveness of
the thermal neuron array in its current form for
target discrimination. Since the model only has
nearest neighbor simulation of the extracellular
linkage, very fast motion of multiple targets relative
to the potassium decay time constant 7x of 3.81 ms
would not give the array time to recover between
excitation events. This can be addressed in multiple

TABLE 1 TABLE 2
Pp(%) tor Four Times of Day and Various Channel FAR(10® x faise-alarms/km?) for Four Times of Day and Various
Contigurations Channel Configurations

Sensor Time of Day Sensor Time of Day

0000 0600 1200 1800 0000 0600 1200 1800
Polar 457 50.5 60.8 715 Polar 85.6 943 102.8 57.5
Therm 85.4 89.1 80.5 24.3 Therm 100.4 109.5 87.7 975.6
Fused 938 100.0 90.9 929 Fused 7.4 8.8 0.0 0.0
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FIGURE 14. Four frames from thermal infrared motion sequence.

FIGURE 15. Thermal neuron array ru"p'onﬁ to thermal infrared motion sequence.

ways: by decreasing 7, increasing the time constant
rise of the threshold 7, or a combination of both.
The trade-off here is the possibility of an increased
number of false firings, since the threshold takes a
longer time to clamp.

The clutter/contrast response of the thermal neuron
array is controlled by our modified form of the latency
time 71 o1, parameters of which were determined using
the experimental rattlesnake data. The exponential
form enhances the leading and trailing edges of the
array response to a moving target, but can have an
adverse effect for multiple targets. Targets following in
the wake would tend to be obscured by the slow firing
rate of the neurons. This problem can be addressed by
using a functional form of 71 ,.; that peaks at a slower
rate. In addition, the longer range extracellular
interactions from a more complete dendritic model
would minimize these effects. Further studies will be
needed to determine the optimal parameters needed
for any given scenario.

The position of the target within the 2-D array
differs from the actual target position in the original
images due to the relatively large velocity compo-
nents of the platform and mobile target. Despite the
obscuration of the target when its signature merges
with the ground clutter, as is evidenced in the third
frame in the sequence in Figure 14, the thermal
neuron array still acts as a discriminator. Based on
the results of the first experimental study, the use of
other channels in a fused analysis would serve to
further enhance the target signature. In addition, the
texture of the region surrounding the moving target
differs from that of the moving background clutter,

and would be able to be distinguished using the
fractal signature approach found in the full fusion
system.

5. CONCLUSIONS

We have presented a multi-stage neural network
model for automatic target recognition. The neural
network model is based on neurons found in the optic
tectum of the rattlesnake which directly integrate
visible and thermal infrared sensory inputs. The six
filters from the middle stage of the network have
shown themselves to be suitable for integration of
multichannel infrared sensory inputs. Based on our
experimental studies, near real-time performance
(226 ms/frame) of the system can be achieved on a
512 node Intel Paragon. The cross-modality nature of
the filters tended to minimize the effect that diurnal
variations in the inputs had on target classification.
At 1800 hours in the Ft. Drum sequence, the thermal
infrared channel was almost completely saturated due
to heating of the scene throughout the day. This
channel, when fused with the polarization channel,
returned a Pp of 92.9% with no false-alarms. In all
cases the Pp are greater than 90% for our test
sequence, and the FAR are sometimes two orders of
magnitude better than discrimination based on single
channel inputs.

The FSOFM used in the first and final stages of
the fusion system shown in Figure 1 is not limited to
two input sensors. Treatment of multispectral data is
straightforward, as demonstrated in previous studies
where multiband images were segmented without
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using the fusion tables (Huntsberger & Ajjimarang-
see, 1990). The only limitation in the current system is
the need for registration of the sensor output images.
For a full fusion analysis, the lookup tables would
have to be modified, or used in a cascade mode to
handle the multiple inputs.

We also presented some preliminary results using a
2-D array of rattlesnake thermal neurons for mobile
target discrimination. Our initial studies indicate that
use of the array with a single sensor input yields low
level motion detection even in the presence of ground
clutter. We are presently investigating the use of the
fusion system for multichannel analysis of the motion
sequences. The first stage of the fusion system will be
replaced with the thermal neuron array in order to
compare its contrast enhancement to that of the
FSOFM. Results from the first experimental study
indicate that much better target discrimination is
possible using this approach. We are also examin-
ing tracking methods for the 2-D array response
patterns.
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